Non- and Semiparametric Identification of Seasonal Nonlinear Autoregression Models

نویسندگان

  • LIJIAN YANG
  • ROLF TSCHERNIG
چکیده

Nonor semiparametric estimation and lag selection methods are proposed for three seasonal nonlinear autoregressive models of varying seasonal flexibility+All procedures are based on either local constant or local linear estimation+ For the semiparametric models, after preliminary estimation of the seasonal parameters, the function estimation and lag selection are the same as nonparametric estimation and lag selection for standard models+ A Monte Carlo study demonstrates good performance of all three methods+ The semiparametric methods are applied to German real gross national product and UK public investment data+ For these series our procedures provide evidence of nonlinear dynamics+

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-and Semiparametric Identiication of Seasonal Nonlinear Autoregression Models

Non-or semiparametric estimation and lag selection methods are proposed for three seasonal nonlinear autoregressive models of varying seasonal exibility. All procedures are based on either local constant or local linear estimation. For the semipara-metric models, after preliminary estimation of the seasonal parameters, the function estimation and lag selection are the same as nonparametric esti...

متن کامل

An introduction to efficient estimation for semiparametric time series

We illustrate several recent results on efficient estimation for semiparametric time series models with two types of AR(1) models: having independent and centered innovations, and having general and conditionally centered innovations. We consider in particular estimation of the autoregression parameter, the stationary distribution, the innovation distribution, and the stationary density.

متن کامل

Nonparametric Modelling of Quarterly Unemployment Rates

A seasonal additive nonlinear vector autoregression (SANVAR) model is proposed for multivariate seasonal time series to explore the possible interaction among the various univariate series. Significant lagged variables are selected and additive autoregression functions estimated based on the selected variables using spline smoothing method. Conservative confidence bands are constructed for the ...

متن کامل

Local Identification of Nonparametric and Semiparametric Models∗

In parametric models a sufficient condition for local identification is that the vector of moment conditions is differentiable at the true parameter with full rank derivative matrix. We show that additional conditions are often needed in nonlinear, nonparametric models to avoid nonlinearities overwhelming linear effects. We give restrictions on a neighborhood of the true value that are sufficie...

متن کامل

Bayesian Semiparametric Regression Analysis of Multicategorical Time-space Data

SUMMARY We present a uniied semiparametric Bayesian approach based on Markov random eld priors for analyzing the dependence of multicategorical response variables on time, space and further covariates. The general model extends dynamic, or state space, models for categorical time series and longitudinal data by including spatial eeects as well as nonlinear eeects of metrical covariates in exibl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002